
Gabrielle Bremer

CIS-2987

Anup Parajuli

No-C-Notes

Summary of the Project
No-C-Notes is an audio music transcription service created by Christina Cotruvo. Just like an audio book

speaks the words from a book, No-C-Notes reads and spells out the sheet music for those with visual

impairments.

The program takes XML files of music pieces and creates audio files that tell the user what notes to play

in a piece. The main problem is sometimes the notes aren’t written in the correct order in the XML files.

To fix this, we use the default-x attribute and other elements in a note to assemble the audio track in

the correct order.

The Approach
My approach to solving this problem was to give each note a unique ID. This makes it easier for the

sorting function to compare the unique ID of the previous note to the current one to determine which

should be written first.

There are five elements that make up the ID for each note. The first is the measure number and I take

this number and multiply it by 100000. Then I add the default-x number. That number is written as an

attribute for each note within the XML. The third element is the note duration. For instance, this could

be a whole, quarter, eighth, or sixteenth note and longer notes should be written first.

After the note duration comes the octave number. There are seven octaves and the lowest one should

be written first. Lastly, the step value is appended to the end of the unique ID. This is the letter value in

a note (low to high: C, D, E, F, G, A, B). Again, lowest tone should be written first.

Here is the dissection of a note in measure three of Happy Birthday.

After unique ID was created for each note, it was added to a multidimensional array with all notes and

their attributes from that measure. Then the array was sent to the sorting method I wrote and the

sorted array was returned and the audio track is assembled.

Here is an example of where this sorting method was helpful:

After I finished sorting all notes correctly, there were a few smaller issues I needed to fix. I needed to

code items for 6-4 time, add the mezzo-piano dynamic, and sort items in the voice map alphabetically so

items are easier to find.

Timeline & Hours

Original timeline:

• Week 9: Recreate the loop that looks through each measure and sorts by the <default-x> value.

• Week 10: Continue to work on the loop and sorting each note by the default-x value.

• Week 11: Start working on sorting notations by the default-y value.

• Week 12: Continue to sort elements by default-y value, ensure this works with the default-x
values.

• Week 13: Start to add rules and logic for elements that weren’t included in the first version of
the app.

• Week 14: Continue to add rules and logic for elements.

• Week 15: Run through many pieces of music to find bugs that may still be in the code.

• Week 16: Add sounds to the voice map.

Original estimation of how long it will take to complete each task

• Rewriting the loop and sorting all elements by default-x and default-y values: 20 hours

• Writing rules and logic for all new elements: 15 hours

• Other bug fixes: 10 hours

• Adding new elements to the database: 5 hours

Total hours estimated: 50 hours

Tasks Completed & Dates:
Actual hours spent: 57 hours

Week 10 Tasks

• Take all music notes in one measure and put into an array

• Loop through the array and pull out the default-x number for each music note

In this first screenshot I’m taking all notes in a measure and putting them into a multidimensional

array called orderList.

Then I pulled out the default-x for each number and added it to the first spot in the array.

Week 11 Tasks

• Create a sorting function to sorts all numbers by default-x from smallest to largest (5.5 hours)

o Send each measure to the sorting function by staff – 1.5 hours

o Create the sorting function – 3 hours

o Add the items in the new list to the track list that gets printed out – 1 hour

In this screenshot I created the method that will sort all of the notes.

And here is where we loop through all of the notes and send the array to the sorting method shown

above.

Week 12 Tasks

• Printing all notes in order by default-x number – 4.5 hours

o Printing out measure number for both hands – 1hour

o Printing out all notes for both hands – 3 hours

o Stop printing the default-x number – 30 minutes

• Start working on getting chords to print in the correct place – 2 hours

• Add another measure to test – 30 minutes

Here’s the adjustment to the sorting function to accept entries that do not have a default-x number tied

to it. For example, “Measure” doesn’t have a value tied to it so it is printed in the same place it was

found.

Next, I took the default-x numbers out of the printout.

Week 13 Tasks

• Fix the last measure getting lost in the printout. – 4 hours

o I had a meeting with a programmer where we tried to figure out why the last measure

wasn’t printing and then found out we needed my code to execute later in the program.

– 2 hours

o I spent the remaining two hours moving the code and putting the pieces back together.

– 2 hours

• Fix the program so it sorts notes by measure (Bonus) – 4 hours

o First, I tried to mess with the sorting function. – 1.5 hours

• Test, test, test - 1 hour

• Send to client to test – 1 hour

Here I looped through the list of attributes being passed into addItems and looked for one that

contained “Measure” (an item would come in as ‘Measure One’). Then I would replace the word

‘Measure’ with empty quotes and trim the empty spaces. After, I would convert the word to a number

to create the first part of the unique ID for each note.

Then, for each tracklist, I parsed the default-x and voice values to numbers. Then I multiplied the

measure number times 100000 and added on the default-x and voice numbers to create a unique ID for

each note. This was added to the tracklist.

Down where items are printed to the screen, I looped through the tracklist for each staff and added all

of the attributes into a jagged array. Then I sent it to the sorting function.

Week 14 Tasks

• Incorporate feedback from my client about the order of the notes – 5 hours, 45 minutes

o Take out voice number and sort by note duration and pitch – 3 hours

o Debug sorting errors – 2 hours, 15 minutes

o Remove unique IDs from unfound items – 30 minutes

• Include ‘mezzo piano’ in the program – 1 hour

• Fix tied note errors – 1 hour

• Test with multiple pieces – 1 hour

During this week I started by reading the feedback I received from my client. There were a few instances

where notes were still printing in the wrong order because the unique IDs were the same. My client’s

solution was to sort by note duration (quarter note, whole note, etc.) if both default-x numbers are the

same. If the note duration is the same, sort by pitch.

The first thing I did was pass the octave, step, and note duration into the method where items are added

into the tracklist. Then I assigned values to those variables based on the advice from my client. She said

longer notes should be printed first, so a whole note gets a value of 1. Then higher pitches should be

printed first compared to lower pitches.

Next, I added it all together. I appended type, octave, and step to the unique ID to create a variable that

will always be unique.

After finishing the problems above, I moved on to fixing tied notes. Tied notes weren’t printed in the

correct places even though they were written in the XML. I found that the program was looking for the

word “tied” when sometimes only “tie” was written in the XML. I modified the program below to also

accept “tie.”

Lastly, there are different dynamics in music to tell the reader how loud to play. Piano is soft while

mezzo-piano is half soft. The program didn’t have a rule for mezzo-piano so it printed piano instead. I

added a rule to this switch case to say if <mp/> is passed in, that means mezzo-piano should be written.

Week 15 Tasks

• Read feedback from client and make all octave tones lowercase – 1 hour

• Fix mezzo-piano issue – 1.5 hours

• Fix ‘with’ issue – 3 hours

• Changes to voice map 1.5 hours

The first issue I tackled during week 15 was printing mezzo-piano in the right place. I realized that

mezzo-piano was bring printed on the wrong staff. This piece of music didn’t have a staff so it was

supposed to be listed as -1 but instead was 0. I added three lines of code to this if statement that gets

the staff to say if staff is equal to null then return -1 for the staff value.

The client wanted all notes to be automatically sorted under the voice map’s “Found Text” column for

easier viewing. It was an easy line of code I added to line 54 of the screenshot below.

Next, I added six four time to the Voice Map because it wasn’t in there already. However, six four time

wouldn’t show up when I sent a piece of music through the program.

One of the last things the client requested I do was make all octave tones lower case. This was relatively

easy, all I had to do was find where the notes were the numbers for the notes were bring printed and

make them all lowercase. Now, instead of eighth-D Four, it’s eighth-D four.

PM Software
I used Monday.com to keep track of my project

Tasks Not Completed
The only major bug I have not patched yet is determining when ‘with’ should be printed in a note. ‘With’

should be printed when two notes are played at the same time and the note with the longest duration

should be printed first. Each shorter note after that should have ‘with’ in front of it. Here is an example:

Reflection
Overall, this was a successful project and I completed most of the items on my list. I’m happy I was able

to help someone who is using their skills to help others.

Throughout this project, I learned that things don’t always go as planned so it is necessary to adapt

quickly to set the project on the right course again. I also learned to overestimate my timelines on

coding projects. I thought I was being generous by quoting 50 hours in the beginning. However, I hit

roadblocks throughout the project and it took me longer than expected. 57 hours is probably a

conservative guess, it may have easily taken almost 70 hours to get as far as I did.

Lastly, I am proud of myself for taking on this project when I knew it was going to be hard. Before this, I

only had one semester of C# experience, and this is the biggest program I’ve ever worked with. While I

struggled a lot, I was persistent and managed to complete most of the project.

Contact Information
Christina Cotruvo

Email: christina.cotruvo@gmail.com

